Spatial analysis of intracerebral electroencephalographic signals in the time and frequency domain: identification of epileptogenic networks in partial epilepsy
نویسندگان
چکیده
Electroencephalography (EEG) occupies an important place for studying human brain activity in general, and epileptic processes in particular, with appropriate time resolution. Scalp EEG or intracerebral EEG signals recorded in patients with drug-resistant partial epilepsy convey important information about epileptogenic networks that must be localized and understood prior to subsequent therapeutic procedures. However, this information, often subtle, is 'hidden' in the signals. It is precisely the role of signal processing to extract this information and to put it into a 'coherent and interpretable picture' that can participate in the therapeutic strategy. Nowadays, the panel of available methods is very wide depending on the objectives such as, for instance, the detection of transient epileptiform events, the detection and/or prediction of seizures, the recognition and/or the classification of EEG patterns, the localization of epileptic neuronal sources, the characterization of neural synchrony, the determination of functional connectivity, among others. The intent of this paper is to focus on a specific category of methods providing relevant information about epileptogenic networks from the analysis of spatial properties of EEG signals in the time and frequency domain. These methods apply to either interictal or ictal recordings and share the common objective of localizing the subsets of brain structures involved in both types of paroxysmal activity. Most of these methods were developed by our group and are routinely used during pre-surgical evaluation. Examples are detailed. Results, as well as limitations of the methods, are also discussed.
منابع مشابه
Spatial analysis of intracerebral EEG in the time and frequency domain: identification of epileptogenic networks in partial epilepsy
Electroencephalography (EEG) occupies an important place for studying human brain activity in general, and epileptic processes in particular, with appropriate time resolution. Scalp-EEG or intracerebral-EEG signals recorded in patients with drug-resistant partial epilepsy convey important information about epileptogenic networks that must be localized and understood prior to subsequent therapeu...
متن کاملطبقه بندی حمله صرعی در سیگنال EEG با استفاده از سیستم استنتاج عصبی- فازی تطابقی
Background & Aims: Epilepsy is a brain disorder in which nerve cells receive abnormal inputs. This disease can lead to abnormal behaviors, feelings and symptoms such as loss of consciousness, which is called the seizure. Identification and classification of the epileptic seizure events in electroencephalographic signal against free seizure intervals plays an important role in clinical investiga...
متن کاملFrom Intracerebral EEG Signals to Brain Connectivity: Identification of Epileptogenic Networks in Partial Epilepsy
Epilepsy is a complex neurological disorder characterized by recurring seizures. In 30% of patients, seizures are insufficiently reduced by anti-epileptic drugs. In the case where seizures originate from a relatively circumscribed region of the brain, epilepsy is said to be partial and surgery can be indicated. The success of epilepsy surgery depends on the accurate localization and delineation...
متن کاملAttenuation of spatial aliasing in CMP domain by non-linear interpolation of seismic data along local slopes
Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques have been developed in time-space domain as well as frequency domain such as frequency-wavenumber, frequen...
متن کاملEntropy analyses of spatiotemporal synchronizations in brain signals from patients with focal epilepsies
The electroencephalographic (EEG) data intracerebrally recorded from 20epileptic humans with different brain origins of focal epilepsies or types of seizures, ages andsexes are investigated (nearly 700 million data). Multi channel univariate amplitude analysesare performed and it is shown that time dependent Shannon entropies can be used to predictfocal epileptic seizure onsets ...
متن کامل